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Perturbation theory renders a plethora of processes computable in quantum field theory. Nevertheless,

certain phenomena are inherently non-perturbative, particularly in the case of QCD and confinement.

Lattice gauge theory is one avenue which allows one to make due without perturbative expansions. In

this framework, path integrals reduce to statistical mechanical computations equivalent to those of the

canonical ensemble, and the integration measure is well-defined. One can then use Markov Chain Monte

Carlo (MCMC) approaches to calculate expectations and correlation functions. In general, the presence of

fermionic Dirac spinors on the lattice can sometimes lead to a sign problem and prevent these algorithms

from converging. Instead of using the law of large numbers to compute numerical values, the present work

focuses on simplifying the expression of the partition function of pure gauge lattice Yang-Mills theory (YM).

To start with, we introduce the techniques used here by applying them to the well-known Ising model. We

then state pure gauge YM on the lattice, and address the continuum limit and renormalization of such a

theory. In order to study confinement without resorting to numerics, we also look at an approximation

involving decoupled plaquettes, which provides a toy model of confinement – or the lack thereof – in

arbitrary dimensions. We then focus on expressing partition functions as tensor networks, in abelian and

non-abelian theories, using representation theory, and incidentally rederive some results concerning 1+1-

dimensional YM. We subsequently show that the local L2
error for a given tensor is subpolynomial in a

power of the ratio between inverse temperature and bond dimension. Understanding the tensor network

formulation of lattice YM will enable the use of algorithms which do not resort to sign-problem-riddled

MCMC, and might provide a step forward in understanding confinement and the mass gap problem.

Preface

The work presented here is the result of a three-and-a-half-month internship in the QUANTIC group at
Inria Paris, under the supervision of Prof. Antoine Tilloy. One of the long-term goal of the group is to
simulate phenomena involving the strong interaction using tensor networks. My short-term goal was to go
as far as I could in this direction, starting with learning basic QFT and lattice gauge theory, and deriving
(probably rederiving in most cases) elementary results which yield qualitative insights into the behavior of
abelian and non-abelian theories, as well as phase transitions and confinement.

One of my main contributions is probably concisely building lattice gauge theories from the ground up,
as seen through the eyes of a master’s student, which I hope yields a pedagogical treatment of the subject
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matter. Before resorting to numerics, I also tried to push analytical results as far as I could, hence the focus
on approximations and 1+1-dimensional theories in a significant part of my work. More closely related to
the task at hand, one contribution is the expression of the relevant tensor networks in the special case of YM,
whether abelian or non-abelian, which resembles formulae given in previous work on lattice theories, except
perhaps for the use of conventional lattice QCD notation. Moreover, I’ve studied the local error induced by
the truncation of the possible bond values in the tensor networks, which is a key element in the numerical
implementation of tensor network algorithms.

I’d like to thank Prof. Antoine Tilloy for his supervision and for granting me much of his time and
attention. His support and guidance have also been vital to my continued studies as an aspiring theoretical
physicist. Thanks are also in order to Karan Tiwana and Dr. Edoardo Lauria, for invaluable discussions
surrounding fascinating physics, and for making QFT more accessible to someone such as myself who has
yet to take all of the relevant classes.
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1 Introduction

Yang and Mills introduced the concept of non abelian
gauge theory to generalize the abelian theory de-
scribing electromagnetism [1]. The framework they
developed, Yang-Mills theory (YM), describes the
behavior of gauge fields, which are fundamental to
the understanding of fundamental forces in particle
physics except for gravity. QCD was shown to fit the
YM landscape by Gell-Mann and Fritzsch, who pro-
posed the idea of quark color charges and the use
of the SU(3) local symmetry group [2]. This led
to the current picture we have of QCD: fermions
known as quarks endowed with a color, interacting
via exchange of massless gauge bosons known as glu-
ons, which also self-interact. In particular, these
self-interactions are an immediate consequence of the
non-abelian nature of the gauge group of QCD.

Further contributions led to YM being used for
computations in QCD. ’t Hooft and Veltman showed
how to renormalize non-Abelian gauge theories [3],
which was necessary to making meaningful calcula-
tions and predictions. Another significant advance-
ment came from the discovery of asymptotic freedom
in non-abelian gauge theories by Gross, Wilczek and
Politzer. They showed that the strong force becomes
weaker at high energies, allowing for a perturbative
approach to calculations in QCD [4, 5].

Nevertheless, at lower energy scales, perturbation
theory breaks down, and one needs non-perturbative
methods. A popular avenue is lattice gauge theory,
the foundations of which were laid down through
the works of Wilson, Kogut and Susskind, who in-
troduced the concept of lattice gauge theory and
its application to QCD [6, 7], the latter only dis-
cretizing space and keeping time continuous. Lat-
tice gauge theory involves discretizing spacetime into
a lattice, with the fields and particles living on the
lattice points. This allows for a rigorous treatment
of non-perturbative aspects of gauge theories, such as
confinement and the generation of particle masses, as
well as predictions of asymptotic freedom. Moreover,
lattice QCD has been instrumental in investigating
the properties of hadrons, QCD phase transitions,
and the behavior of matter under extreme conditions.

Lattice gauge theory also has a role to play in

mathematical physics. Indeed, it might provide a rig-
orous approach to constructing quantum field theo-
ries. There have been e↵orts to axiomatize QFT and
verify that typical field theories – such as YM – satisfy
certain axioms. Two famous examples are the Wight-
man axioms [8], expressed using Lorentzian time, and
the Osterwalder-Shrader axioms for Euclidean time
[9]. Moreover, the path integral formulation – the
more explicitly Lorentz-invariant method for quan-
tizing field theories – uses integration measures over
paths in the continuum which aren’t rigorously de-
fined in the general case. Resorting to the lattice
and the associated Haar measure, and subsequently
taking the continuum limit, is one approach to con-
structing a rigorous path integral.

While lattice gauge theory has benefitted from the
advancement of high-performance computing, com-
puting observables in lattice gauge theory can still
be extremely costly, both in terms of time and spa-
tial complexity. As such, it is useful to borrow tech-
niques from tensor networks to compress certain ten-
sors appearing in various computations. For all in-
tents and purposes, tensors are defined as multidi-
mensional arrays of numbers here. As for tensor net-
works, they are a mathematical framework used to
describe and manipulate contractions of potentially
high-dimensional tensors [10]. They provide a way
to e�ciently represent and compute with large sets
of data or complex quantum states. One commonly
used tensor network state, the simplest in practice,
is the Matrix Product State (MPS). MPS provides a
representation of quantum states in one dimension,
which is particularly useful for simulating systems
with one-dimensional structures, such as spin chains.
More generally, one can also work with Projected En-
tangled Pair States (PEPS). PEPS extend the MPS
framework to higher dimensions, making it suitable
for simulating two-dimensional entanglement.

Tensor networks are particularly useful to the
study of phase transitions in various field theories,
particularly when coupled to coarse-graining meth-
ods associated with the renormalization group. These
have been successfully used to tackle the first models
of quantum field theory, such as �4 theory [11].

Research has also been conducted in quantum
gravity which uses lattice approaches and tensor net-
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works by Dittrich et al. The cases of finite or abelian
gauge groups is extensively studied [12, 13]. Nev-
ertheless, non-abelian gauge theory remains elusive,
and as such YM still isn’t fully understood on the
lattice.

2 A First Example

Let’s start with a simpler lattice theory whose study
involves all of the elements we will use for YM in
the present work: the Ising model. While it is not a
gauge theory (there is global, as opposed to local Z2

symmetry), representation theory is still a powerful
tool in extracting results from its partition function.
In the context of the canonical ensemble, let’s define
the Ising (nearest neigbor) Hamiltonian to be

H = �J
X

<i,j>

xixj (2.1)

where the spin variables are taken to be in U2
⇠= Z2

and we’ll take J = 1 to only consider inverse temper-
ature as a parameter of the theory. We’ll be assuming
periodic boundary conditions here, as well as in all of
the subsequent lattice models. The associated parti-
tion function is given by

Z =
X

{x}

Y

<i,j>

e�xixj (2.2)

The mapping f : x 2 U2 7! e�x 2 R⇤
+ is trivially

(for an abelian group) a central function i.e. for a
group element g, f(gxg�1) = f(x) for all x. The
Peter-Weyl theorem [14] allows us to write the fol-
lowing expansion of f (this is also trivial here, but
will be worth noting in non-abelian gauge theories):

f =
X

r

cr�r (2.3)

where the �r are the irreducible group characters of
U2. These are simply defined by �r((�1)k) = (�1)kr

for r 2 {0, 1}. The cr are the associated Fourier
coe�cients given by

cr =
1

2

X

x2{�1,1}

f(x)�r(x)

=
1

2

�
e� + (�1)re��

�

= cosh (�) exp (r ln tanh�)

(2.4)

Since the gauge group here is abelian, the charac-
ters are multiplicative. Thus

Z =
X

{x}

Y

<i,j>

X

r

cr�r(xi)�r(xj)

=
X

{r}

0

@
Y

<i,j>

cr<i,j>

1

A
X

{x}

Y

<i,j>

�r<i,j>(xi)�r<i,j>(xj)

=
X

{r}

0

@
Y

<i,j>

cr<i,j>

1

A
Y

i

X

xi

Y

j2<i,.>

�r<i,j>(xi)

= 2N
X

{r}

0

@
Y

<i,j>

cr<i,j>

1

A
Y

i

�2

0

@
X

j2<i,.>

r<i,j>

1

A

(2.5)
Where the sum inside the �2 is to be taken modulo

2.

2.1 One-dimensional Case

For d = 1, the �2 constraints amount to summing
over configurations where the character indices are
identical at every interaction. Therefore

Z = 2N
⇣
coshN (�) + sinhN (�)

⌘

= 2N coshN (�)
⇣
1 + tanhN (�)

⌘

⇡
N!1

2N coshN (�)

(2.6)

This clearly yields an analytical free energy, which
implies the lack of any phase transition, in accordance
with Landau theory.

2.2 Two-dimensional Case

The two-dimensional case is significantly more com-
plicated, but nonetheless tractable. Each link of the
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spin lattice carries an interaction, and is character-
ized by a lattice site n and a direction µ. We can thus
rewrite the partition function (2.5) the following way

Z = 2N
X

{r}

 
Y

n,µ

crnµ

!
Y

n

�2

 
X

µ

(rnµ + r(n�µ)µ)

!

(2.7)
We construct a dual lattice which satisfies the �

constraints by definition [15]. The dual lattice has
vertices at the center of each unit cell. We attribute
a value �m 2 {�1, 1} to each vertex, where m is the
dual lattice site. To each link rnµof the original lat-
tice, we can uniquely associate a pair of dual variables
�m,�m�⌫ , with µ 6= ⌫. We can choose to write

rnµ =
1

2
(1� �m�m�⌫) (2.8)

One can check that this satisfies the � constraints
by definition. Expressing the partition function using
the dual variables, we arrive at

Z = 2N
X

{�}

Y

m,⌫

c 1
2 (1��m�m�⌫) (2.9)

Plugging in (2.4), we obtain

Z = 2N coshN (�) sinhN �

⇥

X

{�}

exp

✓
�
1

2
ln tanh (�)�m�m�⌫

◆
(2.10)

Which can also be rewritten

Z� =
1

sinhN 2�̃
Z�̃ (2.11)

Notice that this proportional to a partition func-
tion for an two-dimensional Ising model on the dual
lattice if we define a new inverse temperature �̃ =
�

1
2 ln tanh (�). The model is said to be self-dual (in

the sense of Kramers-Wannier duality). We can show
that this model presents a critical point at � = �̃(�)
[15], which yields the following critical parameter:

�c =
ln (1 +

p
2)

2
(2.12)

Figure 1: Magnetization of a two-dimensional spin
lattice as a function of inverse temperature. The
plot is generated using the Metropolis-Hastings al-
gorithm.

This is the first example of a phase transition,
which is an important concept in lattice gauge theory.

2.3 Mean Field Approximation

If the number of dimensions is high enough, d � 4
for the Ising model, we can model nearest neighbor
interactions using an e↵ective interaction. Indeed,
the coupling between neighboring spins is weaker if
the cardinality of its neighborhood, 2d, is big. We
can thus approximate the real Hamiltonian by the
following (taking a coupling J = 1):

H = �
X

<i,j>

xi hxi (2.13)

This leads to a simple partition function, Z =

2n
d

coshn
d

(2�d hxi). Calculating the average spin
magnetization leads to the following identity

hxi = tanh (2�d hxi) (2.14)

Let’s consider this as the equality between two
functions of hxi, the identity and a function involving
tanh. For small �, hxi = 0 is the only intersection
between the two functions’ graphs, whereas for large
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�, other intersections are possible. The critical in-
verse temperature is obtained when the slope of the
two functions are equal:

�c =
1

2d
(2.15)

We will use these concepts for lattice YM, after
having introduced and summarized the construction
of the aforementioned theory in the following section.

3 Stating Pure Yang-Mills
Theory on the Lattice

In this section, we derive the equivalent of the fol-
lowing Euclidean YM action on the lattice, largely
following the steps outlined in [16]:

S =
1

4g2

ˆ
D [Aµ] TrFµ⌫F

µ⌫ (3.1)

3.1 Fermion Action

As in the continuum, deriving gauge fields relies on
defining a gauge covariant derivative in order to con-
struct a gauge invariant Dirac fermion action. Con-
sider a four-dimensional hypercubical lattice ⇤ of lat-
tice constant a. As in the continuum case, we’d like
the action to be locally G-invariant for a gauge group
G. For all n 2 ⇤, let ⌦(n) 2 G. Consider that under
the action of G, we have the following transforma-
tion  (n) !  0(n) = ⌦(n) (n). We need to make
the discrete derivative term covariant. One way to
do this is to place directional link variables Uµ(n) on
each link in the lattice, and consider the following
identity, where the primed variables are transformed
from the unprimed ones following a gauge transfor-
mation:

 
0
(n)U 0

µ(n) 
0(n+ µ̂)

=  (n)⌦(n)†U 0
µ(n)⌦(n+ µ̂) (n+ µ̂)

(3.2)

This expression can be made covariant provided
that

Uµ(n)! ⌦(n)Uµ(n)⌦(n+ µ̂)† (3.3)

We also define the link variable in the opposite di-
rection using U�µ(n) := Uµ(n � µ)†. Let’s finally
define the discrete covariant derivative in the µ di-
rection:

Dµ (n) =
Uµ(n) (n+ µ̂)� U�µ(n) (n� µ̂)

2a
(3.4)

By construction, the following Euclidean action is
G-invariant:

SF = ad
X

n2⇤

 (n) (�µDµ (n) +m (n))) (3.5)

where the ad⌃ term stands for a discrete integral.

3.2 The Wilson Gauge Action

By construction, the following path-ordered product
is clearly gauge-invariant [16]:

WL = Tr

2

4
Y

(n,µ)2L

Uµ(n)

3

5 (3.6)

where L is a closed loop, referred to as a Wilson
loop. By analogy with the continuum case, we use the
shortest nontrivial closed loop on the lattice, called a
plaquette. We define this path by:

Uµ⌫(n) = Uµ(n)U⌫(n+ µ)U�µ(n+ µ+ ⌫)U�⌫(n+ ⌫)

= Uµ(n)U⌫(n+ µ)Uµ(n+ ⌫)†U⌫(n)
†

(3.7)
We can then use the following gauge boson action:

SG =
2

g2

X

n2⇤

X

µ<⌫

<(Tr [I � Uµ⌫(n)]) (3.8)

3.3 Continuum Limit and Renormal-
ization

In the continuum limit, for a! 0, the Wilson gauge
action ought to go the continuum Yang-Mills action.
Indeed, we can introduce the gauge fields Aµ(n) such
that
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Uµ(n) = eiaAµ(n) (3.9)

Using the BCH identity and expanding the dis-
placed gauge fields in a, we get [17]:

SG ⇡
a4

2g2

X

n2⇤

X

µ<⌫

TrF 2
µ⌫

⇡
a4

4g2

X

n2⇤

TrFµ⌫F
µ⌫

(3.10)

In four dimensions, we retrieve the continuum YM
action:

SG ⇡
1

4g2

ˆ
TrFµ⌫F

µ⌫ (3.11)

Otherwise, we get a constant in front of the YM
continuum action depending on the lattice constant.
For d dimensions, this constant is

� =
a4�d

g2
(3.12)

In order to make sure the lattice theory goes to the
continuum as a ! 0 when d 6= 4, we have to force �
to be equal to a constant by taking a coupling g(a)
defined by:

g(a) = g0a
2� d

2 (3.13)

The discrete theory converges to the continuum
theory as a goes to zero provided we take g(a) as
the coupling constant. Thus defined, the coupling
has dimensions of energy to the (d/2 � 2)-th power.
It is therefore marginal for d = 4, relevant for d < 4
and irrelevant for d > 4 [18]. The continuum limit
will be reached for � ! +1 when d < 4 and � ! 0
when d > 4 a priori. Nevertheless, this statement for
d > 4 is dubious, since it doesn’t account for the non-
renormalizability of the associated continuum theory.
We do not discuss this further here.

We can now define the continuum limit in the con-
text of the present work. We’ll be considering a
hypercubic box of size Ld, and taking a number of
lattice points such that na (�) = L. This roughly
amounts to taking

n = L
�
�g20
� 1

4�d (3.14)

In what follows, we will only work with the Eu-
clidean gauge action SG, and discard the fermion ac-
tion SF . We’ll also be using g0 = 1.

3.4 The Yang-Mills Lattice Path Inte-
gral

Using Euclidean time, one can reformulate the dis-
crete field-theoretic path integral as a statistical me-
chanical theory of random matrices. Indeed, the dis-
crete path integral yields expectation values for op-
erators O of the form

hOi =
1

Z

ˆ
D[U ]O[U ]e�SG[U ] (3.15)

where we define a partition function

Z =

ˆ
D[U ]e�SG[U ] (3.16)

and the following measure over the configuration
of link variables:

D[U ] =
Y

n2⇤

4Y

µ=1

dUµ(n) (3.17)

where dUµ(n) is the Haar measure defined on G,
which must be a compact group [14] for it to be de-
fined. This statistical mechanical theory is stated in
the canonical ensemble, with an inverse temperature
� = 1/g2. The action acts as an energy times an
inverse temperature, thus we’ll be calculating, ana-
lytically and numerically, the following quantity:

hSi = ��
@ lnZ

@�
(3.18)

3.5 The Wilson Loop Order Parame-
ter

It can be shown that the expectation values of indi-
vidual link variables, and more generally local param-
eters, cannot be used as order parameters, contrary
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to the case of the Ising model [19]. Nevertheless, non-
local parameters, such as Wilson loops, are good in-
dicators of potential phase transitions. Therefore, on
top of looking at partition functions and expectation
values of the action, we shall be studying expecta-
tions of Wilson loops. It turns out that Wilson loops
are correlators of Wilson lines. Consider a loop in
the t � x plane. We can use the so-called ”temporal
gauge” and set the link variables in the temporal di-
rection equal to the identity matrix (or 1 in abelian
gauge theory). Thus, a loop is the trace of the prod-
uct of two Wilson lines, which we suppose to be taken
at times t = 0 and t = ant. Let’s call these lines
S(m,n, 0) and S(m,n, nt) respectively, where m,n
are the endpoints of a given line, the loop in question
being a square for the sake of this argument (this no-
tation does not carry over to the following sections,
where S exclusively refers to an action). Their Eu-
clidean correlator yields the expectation of the Wil-
son loop [16]:

hWLi = hTr
⇥
S(m,n, nt)S(m,n, 0)†

⇤
i

=
X

k

h0|S(m,n)ab|ki hk|S(m,n)ba|0i e
�tEk (3.19)

Where the operators on the right are taken in
the Schrödinger picture. It can be shown that
S(m,n)†ba |0i corresponds to a quark-antiquark pair
in the heavy quark limit. The lowest energy term in
the sum corresponds to a static quark-antiquark pair,
and the subsequent terms can be interpreted as ad-
ditional particle-antiquark pairs. If we ignore higher
order terms, we’re left with

hWLi / e�tV (r) (3.20)

where V is the potential of the strong interaction
in the quark-antiquark pair. In the next sections,
we’ll be calculating hWLi in order to extract V (r),
and study the form of the potential. In particular, a
linearly increasing potential is a sign of confinement.

4 Approximations

4.1 Decoupled Plaquette Approxima-
tion

Now that we’ve introduced YM theory on the lat-
tice, we can start digging for some analytical results
– which mainly involve a low-dimensional or approx-
imate configuration. We’re looking at the latter in
this section. Analogously to the Ising model, one can
study lattice YM in what naively resembles mean
field approximation. Indeed, one way to introduce
the mean field in the Ising model is to consider un-
correlated spins. We can do the same for YM, by de-
coupling plaquettes. Quite surprisingly, it turns out
that 1+1-dimensional YM is virtually indistinguish-
able from the decoupled plaquette approximation we
define here (we shall give reasons for this when ex-
ploring 1+1-dimensional gauge theory), and we can
extract some of the qualitative behavior of QCD from
the model. Here, we simplify Haar integrals by inte-
grating over plaquettes instead of link variables, thus
ignoring the ”overlap” between di↵erent plaquettes.
Invariance by action on the right in the Haar mea-
sure yields dUµ(n) = dUµ⌫(n). Thus, distributing
di↵erential group elements in the product defining
the partition function becomes simple:

Z =

✓ˆ
dUe2�(<TrU�2N)

◆ d(d�1)nd

2

= f (�)
d(d�1)nd

2

(4.1)

where the integral defining f is well known, since
it is closely proportional to modified Bessel functions
of the first kind. Indeed, it is given by [20, 21]:

(
fSU(N) (�) =

P
l2Z det [Il+j�i (2�)]1i,jN

fU(N) (�) = det [Ij�i (2�)]1i,jN

(4.2)
where for n 2 Z, x 2 R

In(2x) = e�2Nx
+1X

k=0

x2k+n

k!�(k + n+ 1)
(4.3)

9



Figure 2: Regression for large � behavior yielding N2

scaling of hSi. The points are calculated using (4.1).

It is worth noticing that In is identical to the
Fourier coe�cients determined for U(1). Moreover,
numerical calculations show (see figure 2) that for
large �

hSi / N2ndd(d� 1) (4.4)

In particular, the N2 scaling is comparable to a
result derived for 1+1 dimensions in continuum U(N)
theory by Chatterjee [22].

As for Wilson loops, for a given loop L defined by

hWLi = <hTr
Y

(n,µ)2L

Uµ(n)i (4.5)

we can consider the set A of plaquettes contained
in L and write

hWLi = <hTr
Y

(n,µ,⌫)2A

Uµ⌫(n)i (4.6)

This is clear graphically in figure 4.
The calculation of the expectation value yields a

factor of Z (due to the plaquettes which are outside
of the loop). Therefore:

hWLi = f (�)�nP
<Tr [J(�)nP ] (4.7)

where J has the following integral expression:

Figure 3: Average action as function of � for U(1),
SU(2) and SU(3).

Figure 4: The product of outer link variables is equal
to the product of plaquettes inside the loop. Figure
taken from [16], where it is labeled figure 3.4.
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[J (�)]ij =

ˆ
dUUije

2�(<TrU�N) (4.8)

This integral can be computed using Creutz’s
method [23], which is also concisely summarized by
Carlsson in [21]. Roughly speaking, this method
draws on the fact that Haar integrals of polynomi-
als in U and U† for U 2 SU(N) are polynomials in
Levi-Civita symbols and Kronecker deltas, whose co-
e�cients are derived using known integrals. Using
this method, it can be shown that the integral is pro-
portional to a pair of Levi-Civita symbols (Carlsson
calculates a very similar integral):

[J (�)]ij / ✏ia1...aN�1✏ja1...aN�1 / �ij (4.9)

We therefore use the ansatz [J (�)]ij = h (�) �ij .
We can then determine h using a known integral.
Indeed, tracing out the Kronecker � yields

h (�) =
1

N

ˆ
dU TrUe2�(<TrU�N) (4.10)

To evaluate this integral, we borrow notation from
Carlsson [21]:

h (�) =
1

N

@G

@c

����
c=d=�

(4.11)

where G is a generating function defined in Carls-
son’s paper. This leads to the following result:

h (�) =
1

N

X

l2Z
Tr
⇥
adj ({Il+i�j(2�)}) · {I

0
l+i�j(2�)}

⇤

(4.12)
Therefore, Wilson loops are given by

hWLi = N

✓
f(�)

h(�)

◆�nP

(4.13)

If f(�) > h(�), this gives rise to confinement. In-
deed, using the definition of the potential V from
Gattringer and Lang [16], we get a linear potential:

V (r) =
1

a2
ln

✓
f(�)

h(�)

◆
r (4.14)

For d 6= 4, renormalization actually yields

V (r) =
�
g20�
� 2

4�d ln

✓
f(�)

h(�)

◆
r = �(�)r (4.15)

where we introduce the string tension �. There-
fore, whether or not confinement is present in the
continuum limit depends on d a priori. Numerical
calculations for U(1) and SU(N) for N = 2 and 3
show that for d = 2 or 3, confinement is present in
the continuum, which corresponds to weak coupling.

For d > 4, the continuum limit is also confined,
since the continuum corresponds to strong coupling.
However, this continuum limit is di↵erent from the
true continuum YM theory in d > 4 dimensions, since
the latter is non-renormalizable. As a final remark
on d > 4, it is worth noting that the string constant
goes to zero at large distances (large � according to
(3.13)), suggesting deconfinement

For d = 4, a is decoupled from �. For finite �, tak-
ing a! 0 leads to confinement. In short, it seems the
theory is always confining for the continuous gauge
groups studied here.

4.2 Strong coupling

The limit � ! 0 is worth studying, since it can be
obtained through simple computations, and also cor-
responds to a continuum limit for d > 4. Clearly, for
� ! 0

Z =

ˆ
D[U ]e�S

= 1� 2�<
X

n,µ<⌫

ˆ
(N � TrUµ⌫(n))D[U ] + o (�)

(4.16)
Expanding the traces of the plaquette terms, us-

ing the Schur orthogonality relations relative to the
trivial representation, we finally arrive at

Z = 1� d(d� 1)Nnd� + o (�) (4.17)

which reduces to the expression derived previously
for d = 2, and yields a linear average gauge action at
strong coupling.
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Figure 5: String constant (in units of energy squared)
for di↵erent gauge groups in 2, 3 and 5 dimensions
from top to bottom.

Figure 6: String constant times lattice spacing
squared as a function of �.

In the next sections, we will be dropping the afore-
mentioned approximations and try to approach the
YM action as is.

5 Abelian Gauge Theory

5.1 Partition Function

Due to its importance in QFT and particle physics,
we start by studying U(1) theory in the pure gauge
regime, which amounts to working on lattice QED.
The trace in the action given previously in (3.8) can
be removed, yielding the following simplified action

SG = 2�
X

n2⇤

X

µ<⌫

<(Tr [I � Uµ⌫(n)]) (5.1)

The partition function can then be written

Z =

ˆ
D[U ]

Y

n2⇤
µ<⌫

exp (�2� (1�< (Uµ⌫(n)))) (5.2)

Next, we apply the procedure used to study the
Ising model’s partition function. Consider the func-
tion f : U 2 U(1) 7! exp (�2� (1�< (U))) 2 R⇤

+.
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This is a central function on U(1), and as such it is
subject to the theory of harmonic analysis on com-
pact groups, generalizing the theory on finite groups
[14]. The irreducible representations of U(1) are char-
acterized by individual integers, hence the following
expansion

f =
X

r2Z
cr�r (5.3)

where �r are the characters of irreducible repre-
sentations of U(1) i.e. �r(ei✓) = e�ir✓. The Fourier
coe�cients cr are defined by

cr =
1

2⇡

ˆ 2⇡

0
f
�
ei✓
�
�r

�
ei✓
�
d✓

=
1

2⇡

ˆ 2⇡

0
e2�(cos ✓�1)eir✓d✓

(5.4)

Incidentally, these coe�cients can be evaluated us-
ing quadrature, or using the following expansion, de-
rived using the Taylor expansion of the exponential
and the linearization of monomials in cos ✓:

cr =
+1X

j=0

�2j+re�2�

j!(j + r)!
(5.5)

These coe�cients are proportional to modified
Bessel functions of the first kind. Next, we plug this
expansion into the integrand I[U ] in the definition of
the partition function and use the multiplicativity of
the group characters:

I[U ] =
Y

n,µ<⌫

X

r

cr�r(Uµ(n))�r(U⌫(n+ µ))

⇥ �r(Uµ(n+ ⌫))�r(U⌫(n))

=
X

{r}

Y

n,µ<⌫

crnµ⌫�rnµ⌫ (Uµ(n))�rnµ⌫ (U⌫(n+ µ))

⇥ �rnµ⌫
(Uµ(n+ ⌫))�rnµ⌫

(U⌫(n))
(5.6)

We get the final result by using periodic boundary
conditions and rearranging the product:

Z =

ˆ
D[U ]I[U ]

=
X

(r)

 
Y

n,µ<⌫

crnµ⌫

!

⇥

 
Y

n,µ

ˆ d�1Y

⌫=µ+1

�rnµ⌫�r(n�⌫)µ⌫

µ�1Y

⌫=0

�r(n�⌫)⌫µ
�rn⌫µ

!

(5.7)
In fact, these integrals can be simplified using the

expressions for U(1) characters, yielding the following
result:

Z =
X

(r)

 
Y

n,µ<⌫

crnµ⌫

!
Y

n,µ

� (�⌫rnµ⌫) (5.8)

where we use the Einstein summation conven-
tion (without distinctions between covariant and con-
travariant), take rnµ⌫ = �rn⌫µ and a discrete deriva-
tive defined by

�⌫rn↵� = rn↵� � r(n�⌫)↵� (5.9)

Following the previous reasoning on the Ising
model, we can define a dual lattice, wherein the new
variables �nµ 2 Z are on the previous lattice links,
rather than the plaquettes:

rnµ⌫ =

(
"⌫����nµ if µ < ⌫

�"⌫����nµ if µ > ⌫
(5.10)

where we’ve used Levi-Civita symbols "µ⌫�. Thus,
the dual of U(1) is Z, and the theory is not self dual
[24]. One can easily check that this new lattice sat-
isfies the � constraints, and we obtain the following
partition function:

Z =
X

{�}

Y

n,µ<⌫

c"µ⌫"µ⌫����n
(5.11)

Notice that this doesn’t converge a priori, but this
doesn’t matter in practice since the partition function
can be defined up to an infinite uniform factor [15],
and we’ll also be using a cuto↵ on the variables.
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5.2 Tensor Network

The partition function can be written as a tensor net-
work, in at least two di↵erent ways depending on the
previous section. Indeed, we can use the dual lattice
or not. Let’s ignore the duality transformation for
the moment. One way to get a tensor network is to
define the following tensors:

T{rnµ⌫} =

 
Y

<�

c
1
d
rn�

!
� (�⌫rnµ⌫) (5.12)

In d dimensions, this tensor is a 2(d�1)-legged ten-
sor living on a lattice link, contracted with all tensors
sharing a plaquette with it.

Next, we use the L2 norm to define the er-
ror induced by ignoring all irreps of hyperparam-
eter beyond a certain bound. Let’s define the
set S of allowed irreducible representations S =
{r|8(n, µ, ⌫), rnµ⌫  D}. Then the local error is given
by

" =
X

{r} 62S

T 2
nµ (5.13)

Clearly

" 
X

{r}

Y

µ<⌫

c
2
d
rnµ⌫ (5.14)

An asymptotic estimate of this error can be derived
using the integral expression for the Fourier coe�-
cients and using integration by parts, integrating the
real exponential term j times. Indeed, integration by
parts yields

cr =
e�2�

2⇡

ˆ 2⇡

0
e2� cos ✓eir✓d✓

=
(�1)je�2�

2⇡irj

ˆ 2⇡

0

⇥
e2� cos ✓

⇤(j)
eir✓d✓

(5.15)

Expanding the j-th derivative in the integrand in
powers of �/r leads to

cr = O

 ✓
�

r

◆j
!

(5.16)

T

T

T

T

T

T

T

T

T

T

T

T

Figure 7: Tensor network representing the partition
function of 1+1-dimensional lattice (abelian) gauge
theory. The tensors are placed on the links of the
spacetime lattice (dashed lines), and are contracted
with tensors on the corresponding plaquettes. The
black dots stand for Kronecker �’s.

Therefore

Y

µ<⌫

c
2
d
rnµ⌫ = O

 
�j(d�1)

Y

µ<⌫

1

rjnµ⌫

!
(5.17)

Next, we sum over all configurations of r with at
least one r > D. The dominant term is the one for
which all r = D. Thus, we arrive at

" = O

 ✓
�

D

◆j(d�1)
!

(5.18)

which is valid for all j: the error is subpolynomial
in (�/D)d�1.

Introducing the duality transformation leads to
tensors living on the plaquettes themselves. Those
tensors are instead the c"⌫����nµ

previously men-
tioned, which are also 2(d � 1)-legged tensors. In
d dimensions, the network is a result of the product
of independent d� 1-dimensional networks.
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5.3 Expectation of a Wilson Loop

The expectation value of a Wilson loop can also be
expressed using a tensor network, once we have the
partition function:

hWLi =
1

Z

ˆ
D[U ]WL[U ]e�SG[U ] (5.19)

In the abelian case, the Wilson loop reduces to

WL =
Y

(n,µ)2L

Uµ(n) =
Y

(n,µ)2L

��1 (Uµ(n)) (5.20)

This means that the numerator in (5.19) closely
resembles the partition function Z, except for a few
tensors. Let’s call the tensors appearing in the nu-
merator V{rnµ⌫}. These tensors are defined by

V{rnµ⌫} =

(
T{rnµ⌫} if (n, µ) /2 L and (n+ µ,�µ) /2 L⇣Q

<� c
1
d
rn�

⌘
� ("µ⌫�⌫rnµ⌫ ± 1) else

(5.21)
where the sign is positive for (n, µ) 2 L and nega-

tive for (n+µ,�µ) 2 L in the second case. Then the
final result is given by

hWLi =
1

Z

X

{r}

Y

n,µ

V{rnµ⌫} (5.22)

5.4 1+1-Dimensional Case

In a 2D lattice, the partition function is given by

Z =
X

r2Z
cn

2

r (5.23)

In fact, cr = c�r, so that we actually get

Z = cn
2

0 + 2
+1X

r=1

cn
2

r (5.24)

This expression allows one to derive the following
expression in the strong coupling limit:

Z = 1� 2n2� + o (�) (5.25)

Figure 8: Average Wilson U(1) action in the two-
dimensional case, plotted using character expansion
and Markov chain Monte Carlo method.

This yields a linear average action, which is con-
firmed in the simulations for U(1). We’ll see that this
is also the case for SU(N) for N = 2, 3.

Let’s consider a Wilson loop enclosing nP plaque-
ttes. The � constraints can be solved for easily in
1+1 dimensions. Indeed, we can take a representa-
tion parameter r inside the loop, and r � 1 outside.
This yields:

hWLi =
1

Z

X

r2Z
cnP
r cn

2�nP
r�1 (5.26)

This gives rise to confinement. It is worth compar-
ing this expression with the one derived in the mean
field/decoupled plaquette approximation defined pre-
viously. Indeed, the first term is identical to the mean
field approximation (if we take Z ⇡ cn

2

0 , which is rea-
sonable per numerical simulations), while additional
terms represent a deviation arising from the ”over-
lap” between plaquettes. Numerical results suggest
that these additional terms are negligible (see fig-
ure (8)). Moreover, they can be attributed physical
meaning, using equation 3.19. Indeed, the additional
terms account for energy contributions from extra
particle/antiparticle pairs. The deviation in higher
dimensions from the decoupled plaquette model sug-
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Figure 9: Wilson loop in 1+1-dimensions. The rep-
resentation parameter inside the loop is equal to the
parameter outside of it, plus one.

gests that we might be ignoring too many plaque-
tte overlaps (a plaquette shares link variables with
8(d� 1)� 4 = 4(2d� 3) other plaquettes).

5.5 Finite Gauge Theory

To finish the section on abelian theories, we can con-
sider approximating continuous gauge groups using
finite groups. As it turns out, ZN can approximate
U(1) theory when N ! +1. This is an idea that
can be generalized to the study of quantum groups
replacing the usual gauge groups. These quantum
groups can be seen as ”deformed”, or sometimes dis-
cretized versions of the original group. The partition
function for ZN is the following:

Z =
X

{x}

Y

n,µ<⌫

e2�(xµ⌫(n)�1) (5.27)

A character expansion leads to [13]:

Z = Ndnd X

{r}

 
Y

n,µ<⌫

crnµ⌫

!
Y

n,µ

�N (�⌫rnµ⌫)

(5.28)
where �N is equal to one if its argument is equal to

zero modulo N . The integrals defining Fourier coe�-
cients for infinite groups are replaced by sums with a
factor of 1/N . This yields the following coe�cients:

cr = e�2�
+1X

m=0

+1X

l=0

�2m+r+lN

m! (m+ r + lN)!
(5.29)

For large N , these coe�cients go to those of U(1)
theory. In fact, this can be seen in the string con-
stants plotted in figure 10.

Moreover, mean ZN theory is free in the contin-
uum limit for d < 4, contrary to mean U(1) theory.
Nevertheless, the continuum limit (small �) is still
confined for d � 4.

The treatment of non-abelian YM, introduced in
the next section, follows the same steps, despite ad-
ditional di�culties arising from a more complicated
group structure.

6 Non-Abelian Gauge Theory

6.1 Partition Function

In the non-abelian case, the group character are
no longer multiplicative, and the group integrals
are nontrivial. For a given irreducible represen-
tation ⇡, the associated character is defined using
�⇡(x) = Tr⇡(x) for all x. Let’s define c⇡ to be the
Fourier component relative to ⇡ 2 Ĝ of the function
f : U 2 G 7! exp (2�(<Tr(U � I))) 2 R⇤

+. Then the
partition function takes the following form:

Z =
X

(⇡µ⌫n)
(i),(j),(k),(l)

 
Y

n,µ<⌫

c⇡nµ⌫

!

⇥

 ˆ d�1Y

⌫=µ+1

⇡ij
nµ⌫⇡

kl
(n�⌫)µ⌫

µ�1Y

⌫=0

⇡li
n⌫µ⇡

jk
(n�⌫)⌫µ

!

(6.1)
where we’ve expanded the traces defining represen-

tation characters, and introduced matrix index vari-
ables i, j, k, l which are integer-valued fields defined
over plaquettes, and represent additional variables to
contract over (these yield finite bond dimensions how-
ever, contrary to representations). In the formula
above, i, j, k, l are evaluated at the same plaquette as
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Figure 10: Mean ZN gauge theoretic string constant
� for d = 2, 3, 5 compared to U(1) theory.

the ⇡ representation. One of the di�culties of non-
abelian theories on the lattice is that the Haar inte-
grals don’t have simpler expressions, using a Dirac �
or Levi-Civita symbols, which could lead to the use
of duality methods [12]. Nonetheless, we can still ex-
press the partition function as a tensor network, and
study the induced local error.

6.2 Tensor Network

The tensors are very similar to the ones derived in the
abelian case, except for the nontrivial group integrals
involving representation matrix elements:

T{⇡nµ⌫} =

 
Y

<�

c
1
d
⇡n�

! ˆ d�1Y

⌫=µ+1

⇡ij
nµ⌫⇡

kl
(n�⌫)µ⌫

⇥

µ�1Y

⌫=0

⇡li
n⌫µ⇡

jk
(n�⌫)⌫µ

(6.2)
Furthermore, we have introduced additional tensor

indices, since we are working with matrix elements
instead of exclusively working with characters (this
was necessary because of the non-multiplicativity of
non-abelian group characters). As such, these tensors
are 6(d � 1)-legged, and non-abelian theories induce
more intricate tensor networks. That being said, one
can recover a topology identical to the abelian case,
by concatenating ”representation” and ”matrix in-
dex” variables into a single multi-index, and replac-
ing the Kronecker �’s on plaquettes from the abelian
theory with a more intricate tensor (this can easily
be achieved by taking products of Kronecker �’s).

Estimating the local error in the tensor network
is slightly more involved here. We will neglect trun-
cation over the i, j, k, l variables since they induce a
finite bond dimension N (nevertheless this might be
worth considering carefully for large N). We can use
the following formula stated in [21]:

cr1...rN�1 = e�2�N
X

l2Z
det Ij�i+l+ni(2�) (6.3)

Hadamard’s inequality (applied to the transpose)
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yields an upper bound on the determinants in the
summand:

det Ij�i+l+ni(2�) 
NY

j=1

vuut
NX

i=1

Ii�j+l+nj (2�)
2 (6.4)

Since the bond dimension D is taken to be rea-
sonably large, and ni > D in the error calculation,
we can assume that the i� j indices don’t a↵ect the
upper bound that much. Thus

det Ij�i+l+ni(2�)  N
N
2

NY

j=1

Il+nj (2�)
2 (6.5)

We therefore have

cr1...rN�1  N
N
2 e�2�N

X

l2Z

NY

j=1

Il+nj (2�)
2 (6.6)

Moreover, since modified Bessel functions of the
first kind increase as their parameter goes to zero
(for positive argument), and nN := 0, the term that
dominates will be that for which the quantity

l2 +
N�1X

j=1

(l + nj)
2 (6.7)

is minimized i.e. l = � 1
N

PN�1
j=1 nj . We now have

an asymptotic bound

cr1...rN�1 = O

0

@e�2�N
NY

j=1

Inj� 1
N

PN�1
k=1 nk

(2�)2

1

A

(6.8)
The dominating term in the sum defining the local

error is that for which all parameters are equal to the
bond dimension D. This yields, using the asymptotic
bound for In(2x) obtained using integration by parts:

" = O

 ✓
�

D

◆j(N�1)(d�1)
!

(6.9)

Figure 11: Tensor network representing the partition
function of 1+1-dimensional lattice (non-abelian)
gauge theory. The tensors are placed on the links
of the spacetime lattice (dashed lines), and are con-
tracted with tensors on the corresponding plaquettes.
The solid lines represent contractions over represen-
tations, the black dots stand for Kronecker �’s, while
the blue arcs are contractions over matrix element
indices.

Again, the error is subpolynomial, this time in
(�/D)(N�1)(d�1), and as observed numerically, higher
� requires more computational power, since more
terms need to be included.

6.3 Expectation of a Wilson Loop

The procedure for calculating expectation values of
Wilson loops is identical to that described for abelian
YM. As for the abelian case, only a few tensors are
modified in the network. For this section, let’s write
Wilson loops in the following way:

WL =
X

i1,...,i|L|�1

|L|�1Y

k=1

[Uµk(nk)]ik,ik+1
(6.10)

where we define µ|L| = µ1 and n|L| = n1. Elemen-
tary tensors are now given by:
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V{⇡nµ⌫} =

(
Tnµ if (n, µ) /2 L and (n+ µ,�µ) /2 L⇣Q

<� c
1
d
⇡n�

⌘
Inµ otherwise

(6.11)
where

Inµ =

ˆ
idik,ik+1

dY

⌫=µ+1

⇡ij
nµ⌫⇡

kl
(n�⌫)µ⌫

µ�1Y

⌫=1

⇡li
n⌫µ⇡

jk
(n�⌫)⌫µ

(6.12)
In the above integral, idik,ik+1 should be under-

stood as the function which maps a link variable to
its (ik, ik+1) component.

6.4 1+1-Dimensional Case

For any Yang-Mills pure gauge theory, the partition
function takes the following form in 1+1 dimensions:

Z =
X

⇡2Ĝ

⇣ c⇡
dim⇡

⌘n2

(6.13)

where Ĝ is the set of irreducible representations of
G. It’s worth noting that this expression is consistent
with U(1) two-dimensional theory, since its abelian
nature leads to dim⇡ = 1 for all ⇡, according to
Schur’s lemma.

The formula for Wilson loop expectation values is
also more involved than for U(1):

hWLi =
1

Z

X

⇡,⇢,i,j

⇣ c⇡
dim⇡

⌘nP
✓

c⇢
dim ⇢

◆n2�nP Y

(n,µ)2L

Inµ

(6.14)
This displays an area law, a strong hint of confine-

ment, which is confirmed numerically. Since SU(N)
for N = 2 or 3 are groups of particular note, we illus-
trate these results in the next subsections for these
groups.

6.4.1 SU(2) Case

For G = SU(2), we arrive at

Z =
+1X

r=0

✓
cr

r + 1

◆n2

(6.15)

Indeed, irreducible representations are character-
ized by a single largest weight r. They are (r + 1)-
dimensional, and have the following characters [25]:

�r(✓) =
sin ((r + 1)✓)

sin ✓
(6.16)

where ✓ is the equivalent of the spherical polar an-
gle for the 3-sphere. Indeed, SU(2) ⇠= S3, and as such
group elements are characterized by 3-sphere angles
in spherical coordinates [26, 27]. We can also get
an analytical expression for the Fourier coe�cients
in the same way as in the abelian case:

cr = e�4�
X

k=d� r
2 e

22k�1+rark
(2k + r)!

�2k+r (6.17)

where we define

ark =

✓
r + 2k

k

◆
+

✓
r + 2k

�k

◆
�

✓
r + 2k

k � 1

◆
�

✓
r + 2k

�(k � 1)

◆

(6.18)
As before, in the strong coupling limit, we can ap-

proximate the partition function by an a�ne func-
tion. For � ! 0

Z = 1� 4n2� + o (�) (6.19)

6.4.2 SU(3) Case

For SU(3), we instead get

Z =
+1X

p,q=1

✓
2cpq

pq(p+ q)

◆n2

(6.20)

Here, we’ve chosen expressions for the characters
defined using two of the eigenvalues of a group ele-
ment A,B [28]:
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Figure 12: Average Wilson SU(2) action in the two-
dimensional case, plotted using character expansion
and Markov chain Monte Carlo method.

�p,q(A,B) = �
i

s(A,B)

⇥
eipA�iqB

� e�iqA+ipB

+e�ip(A+B)
�
e�iqA

� e�iqB
�

+eiq(A+B)
�
eipB � eipA

�i

(6.21)
where

s(A,B) = 8 sin

✓
A�B

2

◆
sin

✓
A+ 2B

2

◆

⇥ sin

✓
2A+B

2

◆ (6.22)

The cpq Fourier coe�cients are then obtained using
the following integral, proportional to the one given
in [28]:

cpq = e�6�

ˆ ⇡

�⇡

d(A,B)s2(A,B)

24⇡2
�p,q(A,B)

⇥ exp (2� (cosA+ cosB + cos (A+B)))

(6.23)

Since this expression is more challenging to com-
pute, we do not dwell on its analytical expression
here.

Figure 13: Average Wilson SU(3) action in the two-
dimensional case, plotted using character expansion
and Markov chain Monte Carlo method.

7 Another Approach Involving
Di↵erent Haar Integrals

We conclude this brief tour of pure lattice gauge
theory with an alternate, perhaps more naive ap-
proach. Instead of using group characters, one might
have instinctively expanded the exponential terms in
the partition function, and used techniques such as
Creutz’s method to calculate integrals of products
of group elements [21, 23], or Weingarten generating
functions [24, 29]. This might be useful in higher
dimensional non-abelian theories, where we have to
integrate products of many matrix elements whose
expressions are hard to come by or derive, although
this avenue does not explicitly take advantage of the
gauge group’s structure. Let’s define

U ijkl
µ⌫ (n) = Uµ(n)ijU⌫(n+ µ)jkUµ(n+ µ)lkU⌫(n)il

(7.1)

We then have:
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It follows that

Z = C
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D[U ]

X

(p)2NkN4
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(7.3)

where C = exp
�
�d(d� 1)ndN�

�
. Using the bino-

mial theorem and expanding the real part yields
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BBBB@
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(7.4)

Let’s define f ij
pq(U) =

�p
q

�1/4
Uq
ijUij

p�q
, and add a

bar to f when f takes a Hermitian conjugate in its
argument.
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Reorganizing the products as before finally yields
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(q)(p)
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BBBB@
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�p
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(7.6)

Admittedly, this is a convoluted expression. Never-
theless, it shows there exists an alternative to the for-
mulae derived previously involving integrals of group
elements, rather than group representation matrix el-
ements.

8 A Word on MCMC Simula-
tions

The numerical simulations used in this work largely
depend on Markov Chain Monte Carlo methods
(MCMC), in particular the Metropolis-Hastings al-
gorithm [30, 31]. The general principle is outlined
here in pseudocode (algorithm 1 below).

The simulations conducted for this work use 10d

lattice sites, niter = 100000 and nthermal = 90000.

9 Conclusion

We started with an introduction to lattice gauge the-
ory, and showed how it can benefit from techniques
used to study the Ising model, such as representation-
theoretic character expansions, dual lattices, and the
mean field approximation. We also presented the
construction of pure gauge lattice YM, before ad-
dressing specific gauge theories, both abelian and
non-abelian. We’ve provided an extensive study of
1+1-dimensional lattice YM, and showed how one
could construct tensor networks representing parti-
tion functions or Wilson loops. We’ve shown that
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Data: � � 0, niter, nsize, nthermal

Result: Expectation of observable O: hO(�)i
initialize array lattice of shape
(nsize, . . . , nsize, d,N,N) with random SU(N)
matrices chosen uniformly;
enforce boundary conditions;
initialize array a of size (1, niter � nthermal)
with zeros;
for i 1 to niter do

choose random lattice site with uniform
distribution n and direction j;
update lattice[n, j] with a ”slight
perturbation”;
enforce boundary conditions;
�S  change in action ;
accept update with probability e��S ;
if i > nthermal then

a[i] O(lattice);
end

end

the result is the mean of a
Algorithm 1: Metropolis algorithm calculating
expectation value of an observable O

for U(1) and SU(N), the local error is subpolyno-
mial in a power of �/D, where D is the bond di-
mension – this is perhaps the main result of this re-
port. Incidentally, a similar result for U(N) could
be derived using the same reasoning as that used for
SU(N). Moreover, we’ve extensively studied an ap-
proximation where plaquettes are decoupled from one
another, allowing us to derive analytical expressions
for partition functions and Wilson loops, and obtain
confinement.

Further work might focus on including fermions.
Indeed, modern lattice QCD is heavily based on
Monte Carlo simulations, which are limited by the
sign problem when fermions are introduced, and ten-
sor network methods could become very attractive
in circumventing the former. Another interesting av-
enue for numerical approaches is the study of lattice
gauge theory for quantum groups, which we’ve moti-
vated in the simple case of ZN for large N .

Furthermore, lattice gauge theory provides a
promising way forward in non-perturbative and con-
structive quantum field theory. In particular, it can
provide insightful results regarding phenomena such
as confinement, asymptotic freedom and the mass
gap problem. The coupling between lattice gauge
theory and tensor networks is also mentioned in the
literature as being useful to theories of quantum grav-
ity. Indeed, furthering our understanding, both the-
oretical and numerical, of Yang-Mills theory on the
lattice is a promising path forward in the study of
general gauge theories. It might provide a much-
needed deeper understanding of quantum field the-
ory, and by extension pave the way for a quantum
field-theoretic formulation of gravity.
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& Volmer, J. New polynomially exact integration
rules on U(N) and SU(N) 2016. arXiv: 1610.
01931 [hep-lat].

27. Ammon, A., Hartung, T., Jansen, K., Leövey,
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